Control Modes - Profile Position-Velocity-Torque, Interpolated Position, Homing - Camming, Gearing - Indexer #### Command Interface - CANopen - ASCII and discrete I/O - · Stepper commands - ±10V position/velocity/torque (2 inputs) - PWM velocity/torque command - Master encoder (Gearing/Camming) #### Communications - CANopen DS-402 - RS-232 #### Feedback #### Incremental Incremental Encoders - Digital quad A/B Analog Sin/Cos - Panasonic Incremental A Format - Aux. quad A/B encoder / encoder out #### Absolute Encoders SSI, EnDat, Absolute A, Tamagawa & Panasonic Absolute A Sanyo Denki Absolute A, BiSS (B & C) #### Resolver (-R option) Brushless Resolver #### Other Digital Halls #### Accessories - External regen resistors - External edge filter #### Safe Torque Off (STO) - Two active inputs enable power stage - One output confirms power stage status #### I/O Digital • 15 inputs, 6 outputs #### I/O Analog - 2, 16-bit inputs - 1, 12-bit input - 1, 12-bit output #### Dimensions: in [mm] • 7.92 x 5.51 x 2.31 in (201.2 x 139.9 x 58.7 mm) | Model | Vac | Ic | Iр | |------------|-----------|----|----| | XPL-230-18 | 100 - 240 | 6 | 18 | | XPL-230-36 | 100 - 240 | 12 | 36 | | XPL-230-40 | 100 - 240 | 20 | 40 | | | | | | Fax: 781-828-6547 Page 1 of 28 Add -R for resolver feedback option #### **DESCRIPTION** *Xenus Plus* set new levels of performance, connectivity, and flexibility. CANopen communication provides a widely used cost-effective industrial bus. A wide range of absolute interfaces are built-in including EnDat, Hiperface, and BiSS. High resolution A/D converters ensure optimal current loop performance. Both isolated and high-speed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed. # Xenus ### **CANopen** Test conditions: Wye connected load: 2 mH line-line. Ambient temperature = 25 °C. Power input = 230 Vac, 60 Hz, 1 Ø | MODEL | | XPL-230 |)-18 | XPL-230-36 | XPL-230-40 | | |-----------|---|---|------------------------|------------------------------|--|--| | OUTPUT C | | 10 (10 | ٦١ | 26 (25 5) | 40 (20 2) | | | | eak Current
eak time | 18 (12.
1 | 7) | 36 (25.5)
1 | 40 (28.3)
1 | Adc (Arms, sinusoidal)
s | | | ontinuous current (No | • | 4) | 12 (8.5) | 20 (14.1) | Adc (Arms, sinusoidal) | | INPUT PO | , | , , | , | (= =) | - / | , | | | ains voltage, phase, | | | 100~240 | | Vac, ±10%, 1Ø or 3Ø, 47∼63 Hz | | | aximum Mains Curre | | | | 20.0 | Arms | | | aximum Mains curre
24 Vdc Control powe | | ±20 to | 10.4
+32 Vdc, 500 mA | 15.4 | Arms
Required for operation | | DIGITAL C | | | <u>+20 to</u> | +32 vuc, 300 ma | <u> </u> | Required for operation | | | igital Control Loops | Current velocit | ty nosition | 100% digital loop o | ontrol | | | | ampling rate (time) | | | | ition loops: 4 kHz (250 |) μs) | | | us voltage compensa | | | oltage do not affect | bandwidth | | | | inimum load inducta | <u> </u> | | | | | | | | GITAL INPUT FUNCTION | IS ARE PROC | GRAMMABLE) | | | | | ted Control Modes
ANopen | | Position \ | Velocity Torque Ho | ming Profile and Inte | erpolated profile modes | | | lone mode | | 1 03161011, | velocity, forque, flo | ining, i rome, and ince | inpolated profile modes | | An | nalog torque, velocity | y, position reference | | 14 bit resolution | | differential analog input | | ъ: | Input impedance | | 74.8 kΩ | ti CM/CCM | | Ref(+), Ref(-) | | Di | igital position referer | ice | Pulse/Dire
Quad A/B | ection, CW/CCW
Encoder | | ommands (2 MHz maximum rate)
ec, 8 Mcount/sec (after quadrature) | | Di | igital torque & veloci | ty reference | PWM , Po | | | % - 100%, Polarity = 1/0 | | | - • | • | PWM 50% | ,
0 | PWM = 50 | % ±50%, no polarity signal required | | | | | | uency range | | imum, 100 kHz maximum | | In | idexing | | | imum pulse width | 220 ns
nunched from inputs on | r ASCII commands | | | amming | | Up to 10 | CAM tables can be s | stored in flash memory | / | | | SCII | | RS-232, 9 | 9600~115,200 Baud | l, 3-wire, RJ-11 conne | ctor | | DIGITAL I | | | | | | | | | umber | 15 | | OC 6140 24 1/da | | V 12 22 Vd- V 1 0 7 1 E Vd- | | [11] | N1,2,15] | Non-isolated Schmitt tr
10 k Ω programmable p | rigger, I µs i | RC filter, 24 vac ma: | $X, V_T + = 2.5 \sim 3.5 \text{ Vac},$ $\text{coull-down to around}$ | $V_{T}^{-} = 1.3 \sim 2.2 \text{ Vdc}, V_{H}^{+} = 0.7 \sim 1.5 \text{ Vdc}$ | | ΙΙΊ | N3~6] | | | | | 4 single-ended, or 2 differential | | | | Single-ended: [IN3,4] | or [IN5,6]: \ | Vin-LO <= 2.3 Vdc, | Vin-HI >= 2.7 Vdc, Vl | hysteresis = 400 mVdc | | | N.7 441 | | | | | c, Vhysteresis = ±200 mVdc | | [11 | N7~14] | Opto-isolated, ±15~30 | | | | tor each group
±3.6 mA @ ±24 Vdc, typical | | ANALOG I | INDITS | Ratea Impaise = 000 V | , viii LO <u>=</u> 0 | vac, viii iii = 10 | To vac, input current | 25.0 HM & 224 Vac, typical | | | umber | 3 | | | | | | | AIN1~2] | Differential, ±10 Vdc, 5 | | | | | | | AIN3] | Single-ended, motor te | emperature s | sensor, 4.99 k Ω pull | ed-up to $+5$ Vdc, $12-b$ | it resolution | | DIGITAL C | | 6 | | | | | | | umber
DUT1~2] | 6
Current-sinking MOSFE | T with 1 kO | nullun to ±5 Vdc th | rough diode | | | ال | 7011··2j | 1 Adc max, +40 Vdc m | | | | e loads | | | DUT3] | High-speed CMOS buffe | er, ±32 mA | , | • | | | | OUT4~5] | Opto-isolated Darlingto | | | | 1.)/de 1.0de mes | | ANALOG O | OUTRUT | Motor brake control: op | oto-isolated, | current-sinking Wit | п пураск июце то +24 | + vuc, 1 Auc IIIdX | | | umber, Type | 1, ±5 Vdc single-ended | 1. 12-hit res | olution | | | | | DDE ENCODER PORT | | 1, 12 bit 1030 | oracion | | | | | s Input | Secondary digital quad | rature encod | der (A, /A, B, /B, X, | /X), 121 Ω terminatin | g resistors | | | • | 18 M-counts/sec, post- | quadrature | (4.5 M-lines/sec) | | | | As | s Output | | | | | 65,536 counts) per rev | | | | from analog sin/cos en
A, /A, B, /B, X, /X, fron | | | | d A/B/X primary encoder | | RS-232 PC | ORT | <u> </u> | 11 1·1AAJUJZ | amerendal line univ | <u></u> | | | | gnals | RxD, TxD, Gnd in 6-pos | sition, 4-con | tact RJ-11 style mo | dular connector | | | Mo | ode | Full-duplex, DTE serial | communicat | | | 0 to 115,200 baud | | | otocol | Binary and ASCII forma | ats | | | | | CAN PORT | | CANILL CANIL STORES | D : C : | do1-53 45 1 | and dates | and an ann CAN CL DD 2002 (1997) | | | gnals
ormat | CANH, CANL, CAN_GNI
CAN V2.0b physical lay | | | | red as per CAN Cia DR-303-1, V1.1 | | | ata | CAN vz.ub physical lay
CANopen Device Profile | | specu connections C | οπριιαπι | | | | ode-ID selection | 16 position rotary swite | ch on front p | | | | | | | digital inputs or progra | ammable to | flash memory (7-bit | addressing, 127 node | es per CAN network | | | NDICATOR LEDS | | | | | | | | rive Status
AN Status | Bicolor LED, drive status of C | | | | dition
licator Specification 303-3 | | | חוז שנמנט | DICOIDI LLD, Status Of C | יווווון פטע אורע | cated by color allu t | JIIIK COUES TO CAIN IIIU | iicator apecinication aug-a | - 1. Heatsinking and/or forced-air cooling is required for the continuous output power rating - 2. Brake[OUT6] is programmable as motor brake, or as general purpose digital output 3. The actual mains current is dependent on the mains voltage, number of phases, and motor load and operating conditions. The Maximum Mains Currents shown above occur when the drive is operating from the maximum input voltage and is producing the rated continuous output current at the maximum output voltage. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 2 of 28 # **Xenus** CA ### **CANopen** **5V OUTPUT** Two independent 5 Vdc @ 400 mA outputs, thermal and short-circuit protected REGENERATION Internal solid-state switch drives external regen resistor (see Ordering Guide for types) Operation Cut-In Voltage +HV > 390 VdcRegen output is on, (optional external) regen resistor is dissipating energy Drop-Out Voltage +HV < 380 Vdc Regen output is off, (optional external) regen resistor not dissipating energy Tolerance ±2 Vdc For either Cut-In or Drop-Out voltage **PROTECTIONS** HV Overvoltage +HV > 400 Vdc Drive PWM outputs turn off until +HV is less than overvoltage HV Undervoltage +HV < 60 Vdc Drive PWM outputs turn off until +HV is greater than undervoltage Drive over temperature IGBT > 80 °C ±3 °C Drive PWM outputs turn off until IGBT temperature is below threshold Short circuits Output to output, output to ground, internal PWM bridge faults I2T Current limiting Programmable: continuous current, peak current, peak time Motor over temperature Programmable input to disable drive when voltage is above or below a set point 0~5 Vdc Fault occurs if feedback is removed or +5 V is <85% of normal Feedback power loss MECHANICAL & ENVIRONMENTAL 7.92 x 5.51 x 2.31 in (201.2 x 139.9 x 58.7 mm) Size 3.0 lb (1.36 kg) for drive without heatsink 3.1 lb (1.40 kg) for XPL-HS heatsink, 1.86 lb (0.84 kg) for XPL-HL heatsink 0 to +45 °C operating, -40 to +85 °C storage Weight Ambient temperature 0% to 95%, non-condensing Humidity Contaminants Pollution degree 2 2 g peak, $1\breve{0}\sim500$ Hz (sine), IEC60068-2-6 Vibration 10 g, 10 ms, half-sine pulse, IEC60068-2-27 Shock Environment IEC68-2: 1990 Cooling Heat sink and/or forced air cooling required for continuous power output AGENCY STANDARDS CONFORMANCE In accordance with EC Directive 2004/108/EC (EMC Directive) EN 55011: 2007 CISPR 11:2003/A2:2006 Industrial, Scientific, and Medical (ISM) Radio Frequency Equipment - Electromagnetic Disturbance
Characteristics – Limits and Methods of Measurement Group 1, Class A EN 61000-6-1: 2007 Electromagnetic Compatibility (EMC) – Part 6-1: Generic Standards – Immunity for residential, Commercial and Light-industrial Environments In accordance with EC Directive 2006/95/EC (Low Voltage Directive) IEC 61010-1:2001 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use Underwriters Laboratory Standards UL 61010-1, 2nd Ed.: 2004 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use UL File Number E249894 #### FEEDBACK SPECIFICATIONS Protection | DIGITAL QUAD A/B ENCODER | | |---------------------------|--| | Type | Quadrature, differential line driver outputs | | Signals | A, /A, B, /B, (X, /X, index signals optional) | | 3 | RS-422/RS-485 line receivers with fault detection for open/shorted inputs, or low signal amplitude | | Frequency | 5 MHz line frequency, 20 MHz quadrature count frequency | | ANALOG ENCODER | | | Туре | Sin/cos/index, differential line driver outputs, 0.5 Vpeak-peak (1.0 Vpeak-peak differential) centered about 2.5 Vdc typical. Common-mode voltage 0.25 to 3.75 Vdc | | Signals | Sin(+), $sin(-)$, $cos(+)$, $cos(-)$, $index(+)$, $index(-)$ | | Frequency | 230kHz maximum line (cycle) frequency | | Interpolation | 10 bits/cycle (1024 counts/cycle) | | DIGITAL HALLS | | | Туре | Digital, single-ended, 120° electrical phase difference | | Signals | U, V, W | | Inputs | 10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters | | MULTI-MODE ENCODER PORT | | | As Input | Secondary digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors | | | 18 M-counts/sec, post-quadrature (4.5 M-lines/sec) | | As Emulated Output | Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev | | | from analog sin/cos encoders or resolvers. | | | A, /A, B, /B, X, /X, from MAX3032 differential line driver | | As Buffered Output | Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver | | RESOLVER (-R OPTION) | | | Туре | Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio | | Resolution | 14 bits (equivalent to a 4096 line quadrature encoder) | | Reference frequency | 8.0 kHz | | Reference voltage | 2.8 Vrms, auto-adjustable by the drive to maximize feedback | | Reference maximum current | 100 mA | | Maximum RPM | 10,000+ | | ENCODER POWER SUPPLIES | | | Number | 2 | | Ratings | +5 Vdc @ 400 mA from +5V Out1 on J8-20 and +5V Out2 on J10-6, J10-17 | Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 3 of 28 Encoder power developed from +24 Vdc so position information is not lost when AC mains power is removed Thermal and short-circuits to ground # CANopen #### SPECIFICATIONS (CONT'D) SAFE TORQUE OFF (STO) Inputs 2 two-terminal: [STO-1+], [STO-1-], [STO-2+], [STO-2-] Type Opto-isolators, 24V compatible Output 1 two-terminal: [LED+], [LED-] 24V compatible Functional Safety IEC 61508-1, IEC 61508-2, EN(ISO) 13849-1, EN(ISO) 13849-2 #### Note! When you see this marker, it's for hot tips or best practices that will help you get the best results when using Copley Controls products. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 4 of 28 ### CANopen #### **CANOPEN** Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card. #### CANOPEN COMMUNICATION Xenus uses the CAN physical layer signals CAN_H, CAN_L, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN address. A maximum of 127 CAN nodes are allowed on a single CAN bus. The rotary switch on the front panel controls the four lower bits of the seven-bit CAN address. When the number of nodes on a bus is less than sixteen, the CAN address can be set using only the switch. For installations with sixteen or more CAN nodes on a network CME 2 can be used to configure Xenus to use the rotary switch, or combinations of digital inputs and programmed offset in flash memory to configure the drive with a higher CAN node address. For more information on CANopen communications, download the CANopen Manual from the Copley web-site: http://www.copleycontrols.com/motion/downloads/pdf/CANopenProgrammersManual.pdf #### **CANOPEN CONNECTORS** Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface. A CAN terminator should be placed in the last drive in the chain. The XPL-NK connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet cable. #### J7 CAN CONNECTIONS #### NET (CAN STATUS) LED A bi-color LED gives the state of the CAN connection in accordance with the CAN-CiA specification 303, part 3. The green (RUN) LED shows the state of the CANopen state machine. The red (ERR) LED shows the occurrence of errors (sync, guard, or heartbeat) and of the CAN bus physical laver. During a reset condition, the green LED will be off. In operation, the red & green colors will alternate with the number of blinks or on/off condition shown in the table to the right. Note: Red & green led on-times do not overlap. LED color may be red, green, off, or flashing of either color. #### XPL-NK CAN CONNECTOR KIT The kit contains the XPL-CV adapter that converts the CAN interface D-Sub 9M connector to an RJ-45 Ethernet cable socket, plus a 10 ft (3 m) cable and terminator. Both connector pin-outs conform to the CiA DR-303-1 specification. # Error Control Event of the speed spee #### CAN NETWORK NODE-ID (ADDRESS) In an CANopen network, nodes are assigned addresses $1\sim127$. Address 0 is reserved for the CAN bus master. In the XPL, the node address is provided by two 16-position rotary switches with hexadecimal encoding. These can set the address of the drive from $0\times01\sim0\times7F$ ($1\sim127$ decimal). The chart shows the decimal values of the hex settings of each switch. CME2 -> Amplifier -> Network Configuration #### Node-ID (Address) Switches To find the Node-ID given the switch settings: Node-ID = (S1 * 16) + S2Example: S1 = 5, S2 = B Example: S1 = 5, S2 = BS1 value = (5*16) = 80, S2 value = Hex(B) = 11, Node-ID = 80 + 11 = 91 To find the switch settings for a given address: S1 = The integer part of (Node-ID / 16) S2 = Hex (Node-ID - (S1 * 16))Example: Node-ID = 91 S1 = 91/16 = 5.69, integer part = 5, (5*16) = 80 S2 = Hex (91 - 80) = 11 = 0xB | | S1 | S2 | | | |-----|------------|----|--|--| | HEX | DEC | | | | | 0 | 0 | 0 | | | | 1 | 16 | 1 | | | | 2 | 32 | 2 | | | | 3 | 48 | 3 | | | | 4 | 64 | 4 | | | | 5 | 80 | 5 | | | | 6 | 96 | 6 | | | | 7 | 112 | 7 | | | | 8 | | 8 | | | | 9 | | 9 | | | | Α | Not | 10 | | | | В | Used | 11 | | | | С | for
CAN | 12 | | | | D | Addr | 13 | | | | Е | | 14 | | | | F | | 15 | | | #### COMMUNICATIONS #### RS-232 COMMUNICATIONS XPL is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the XPL RS-232 port are through J7, an RJ-11 connector. The XPL Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles. #### J6: RS-232 PORT RJ-11 receptacle, 6 position, 4 contact | PIN | SIGNAL | |-----|--------| | 2 | RxD | | 3,4 | Gnd | | 5 | Txd | #### STAT LED (ON J6) A bi-color LED gives the state of the Xenus Plus drive. Colors do not alternate, and can be solid ON or blinking: = Drive OK and enabled. Will run in response to reference inputs Green/Solid or EtherCAT commands. Green/Slow-Blinking Drive OK but NOT-enabled. Will run when enabled. Green/Fast-Blinking Positive or Negative limit switch active. Drive will only move in direction not inhibited by limit switch. Red/Solid Transient fault condition. Drive will resume operation when fault is removed. Red/Blinking Latching fault. Operation will not resume until drive is Reset. Drive Fault conditions: - Over or under-voltage - Encoder +5 Vdc fault - Short-circuits from output to output - · Internal short circuits Faults are programmable to be either transient or latching - · Motor over-temperature - Drive over-temperature - Short-circuits from output to ground #### SER-CK SERIAL CABLE KIT The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the XPL. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the XPL. The connections are shown in the diagram below. Don't forget to order a Serial Cable Kit SER-CK when placing your order for an XPL! #### **ASCII COMMUNICATIONS** The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and Xenus series amplifiers over an RS-232 serial connection. For instance,
after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to: - Enable the amplifier in Programmed Position mode. - Home the axis. - Issue a series of move commands while monitoring position, velocity, and other run-time variables. The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. Sending a break character will reset the Baud rate to 9,600. Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII_ProgrammersGuide.pdf #### RS-232 MULTI-DROP The RS-232 specification makes no allowance for more than two devices on a serial link. But, multiple Xenus drives can communicate over a single RS-232 port by daisy-chaining a master drive to other drives using CAN cables. In the CAN protocol, address 0 is reserved for the CAN master and thereafter all other nodes on a CAN network must have unique, non-zero addresses. When the Xenus CAN address is set to 0, it acts as a CAN master, converting the RS-232 data into CAN messages and passing it along to the other drives which act as CAN nodes. For Serial-multi-drop you'll need an Serial Cable Kit SER-CK plus CANopen network cables to connect the drives as shown. The XPL-NC-01 and XPL-NC-10 are 1 ft (0.3m) and 10 ft (3m) cables that will do the job. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 6 of 28 #### SAFE TORQUE OFF (STO) #### **DESCRIPTION** The XPL has a safety feature that is designed to provide the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Two opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs. #### FUNCTIONAL DIAGRAM In order for the PWM outputs of the Xenus Plus to be activated, current must be flowing through both opto-couplers that are connected to the STO-1 and STO-2 terminals of J5, and the drive must be in an ENABLED state. The LED outputs on J5 connect an opto-coupler to an external LED and will conduct current through the LED to light it whenever the PWM outputs can be activated, or the drive is in a diagnostic state. When the LED opto-coupler is OFF, the drive is in a Safe state and the PWM outputs cannot be activated to drive a motor. #### STO MUTING The diagram below shows connections that will energize both STO-1 and STO-2 opto-couplers. When this is done the STO feature is "muted" and control of the output PWM stage is under control of the digital control core. If not using the STO feature, these connections must be made in order for the Xenus to be enabled. #### **FUNCTIONAL DIAGRAM** #### STO CONNECTOR MUTING CONNECTIONS 2-9 3-4 5-8 #### J5 SIGNALS | PIN | SIGNAL | PIN | SIGNAL | |-----|-----------|-----|----------------| | 1 | Frame Gnd | 6 | STO-LED(+) | | 2 | STO-1(+) | 7 | STO-LED(-) | | 3 | STO-1(-) | 8 | 24 Vdc Common | | 4 | STO-2(+) | 9 | +24 Vdc Output | | 5 | STO-2(-) | | | Fax: 781-828-6547 Page 7 of 28 #### COMMAND INPUTS #### **DIGITAL POSITION** Digital position commands can be in either single-ended or differential format. Single-ended signals should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. Differential inputs have 121 Ω line-terminators. #### SINGLE-ENDED PULSE & DIRECTION #### SINGLE-ENDED CU/CD #### QUAD A/B ENCODER SINGLE-ENDED #### **DIFFERENTIAL PULSE & DIRECTION** #### DIFFERENTIAL CU/CD #### QUAD A/B ENCODER DIFFERENTIAL #### DIGITAL TORQUE, VELOCITY Digital torque or velocity commands can be in either single-ended or differential format. Single-ended signals must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. #### SINGLE-ENDED PWM & DIRECTION #### SINGLE-ENDED 50% PWM #### **DIFFERENTIAL PWM & DIRECTION** #### **DIFFERENTIAL 50% PWM** Fax: 781-828-6547 Page 8 of 28 #### MULTI-MODE ENCODER PORT This port consists of three differential input/output channels that take their functions from the Basic Setup of the drive. With quad A/B encoder feedback, the port works as an output, buffering the signals from the encoder. With resolver or sin/cos encoder versions, the feedback is converted to "emulated" quad A/B/X signals with programmable resolution. These signals can then be fed back to an external motion controller that closes the position or velocity loops. As an input, the port can take quad A/B signals to produce a dual-loop position control system or use the signals as master-encoder commands in camming mode. In addition, the port can take stepper command signals (CU/CD or Pulse/Direction) in differential format. #### AS COMMAND INPUTS # AS DIGITAL COMMAND INPUTS IN PULSE/DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used. ### AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration. #### AS AN OUTPUT FOR FEEDBACK SIGNALS TO AN EXTERNAL CONTROLLER ### AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J8, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor. ### AS EMULATED QUAD A/B/X ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 9 of 28 #### **INPUTS** #### NON-ISOLATED DIGITAL INPUTS Inputs [IN1,2,15] are 24V tolerant These are high-speed types with pull-up resistors to +5 Vdc and 1 µs RC filters when driven by active sources. The active level is programmable on each input. Input [IN1] is dedicated to the drive enable function. The remaining inputs [IN2~IN15] have programmable functions. #### DIGITAL INPUTS [IN3~6] These inputs have all the programmable functions of the GP inputs plus these additional functions on [IN8] & [IN9] which can be configured as singleended or differential: - PWM 50%, PWM & Direction for Velocity or Current modes - · Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes #### SINGLE-ENDED 12 Vdc max # J8 Control 12V MAX3096 $I\!\!I$ [IN3] 2.5V MAX3096 +5V MAX3096 [IN5] [IN6] 1a 001 MAX3096 #### **DIFFERENTIAL** 12 Vdc max PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Xenus inputs to pull-down to ground for current-sourcing connections, and to pull-up to 5V for current-sinking connections. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 10 of 28 Fax: 781-828-6547 #### OPTO-ISOLATED DIGITAL INPUTS These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, each with its' own common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to ± 24 V, then the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc. [IN7~10] ±30 Vdc max 24V GND 24V 24V 2 [IN7] 4.7k [IN11~14] ±30 Vdc max Inputs [7 \sim 14] work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to 15 \sim 24V from the controller for current-sinking connections. #### ANALOG INPUTS Two differential analog inputs with ± 10 Vdc range have programmable functions. As a reference input [AIN1] can take position/velocity/torque commands from a controller. A second input [AIN2] is programmable for other functions. The ratio of drive output current or velocity vs. reference input voltage is programmable. Fax: 781-828-6547 Page 11 of 28 #### **OUTPUTS** #### DIGITAL OUTPUTS [OUT1], [OUT2] These are open-drain MOSFETs with 1 $k\Omega$ pull-up resistors in series with a diode to +5 Vdc.
They can sink up to 1 Adc from external loads operating from power supplies to +30 Vdc. The output functions are programmable. The active state of the outputs is programmable to be on or off. When driving inductive loads such as a relay, an external fly-back diode is required. The internal diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc. The diode prevents conduction from +24 Vdc through the 1 k Ω resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state. #### HIGH SPEED OUTPUT [OUT3] 5V CMOS #### **BRAKE OUTPUT [OUT6]** This output is an open-drain MOSFET with an internal flyback diode connected to the +24 Vdc input. It can sink up to 1A from a motor brake connected to the +24 Vdc supply. The operation of the brake is programmable with *CME 2*. It can also be programmed as a general-purpose digital output. #### OPTO-ISOLATED OUTPUTS [OUT4,5] #### 30 Vdc max Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes. #### ANALOG OUTPUT The analog output is programmable and has an output voltage range of ±5 Vdc. An op-amp buffers the output of a 12-bit D/A converter. Fax: 781-828-6547 Page 12 of 28 #### MOTOR CONNECTIONS Motor connections are of three types: phase, feedback, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. Feedback can be digital quad A/B encoder, analog sin/cos encoder, resolver or digital Halls, depending on the version of the drive. #### QUAD A/B ENCODER WITH FAULT PROTECTION Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions: This produces a near-zero voltage between A & /A which is below the differential fault threshold. Short-circuits line-line: The 121Ω terminator resistor will pull the inputs together if either side (or both) is open. Open-circuit condition: This will produce the same fault condition as a short-circuit across the inputs. This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV. Low differential voltage detection: The 3097E has protection against high-voltage discharges using the Human Body Model. ±15kV ESD protection: Extended common-mode range: A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V #### CONNECTIONS WITH A/B/X ENCODER #### ANALOG SIN/COS INCREMENTAL ENCODER The sin/cos/index inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors. #### CONNECTIONS WITH NO INDEX SIGNAL #### RESOLVER (-R MODELS) Connections to the resolver should be made with shielded cable that uses three twisted-pairs. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments. Fax: 781-828-6547 Page 13 of 28 Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com #### SSI ABSOLUTE ENCODER The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XPL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master. #### **ENDAT ABSOLUTE ENCODER** The EnDat interface is a HeidSTO-1ain interface that is similar to SSI in the use of clock and data signals, but which also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable as is the use of sin/cos channels. Use of sin/cos incremental signals is optional in the EnDat specification. #### **BISS ABSOLUTE ENCODER** BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options Serial Synchronous Data Communication Cyclic at high speed 2 unidirectional lines Clock and Data Line delay compensation for high speed data transfer Request for data generation at slaves Safety capable: CRC, Errors, Warnings Bus capability incl. actuators Bidirectional BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode #### NIKON-A ABSOLUTE ENCODER The Nikon A interface is a serial, half-duplex type that is electrically the same as RS-485 Fax: 781-828-6547 Page 14 of 28 #### MOTOR PHASE CONNECTIONS The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J2-1) for best results. #### **DIGITAL HALL SIGNALS** Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation. * Alternate Sgnd connections on J10 are pins 16, 25, 26 #### MOTOR TEMPERATURE SENSOR Analog input [AIN3] Motemp, is for use with a motor overtemperature switch or sensor. The input voltage goes through a low-pass filter to a 12-bit A/D converter. The active level of the input, Vset, is programmable generate an overtemperature fault if the input voltage is <Vset, or >Vset. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 15 of 28 #### MULTI-MODE ENCODER PORT This port consists of three differential input/output channels that take their functions from the Basic Setup of the drive. With quad A/B encoder feedback, the port works as an output, buffering the signals from the encoder. With resolver or sin/cos encoder versions, the feedback is converted to "emulated" guad A/B/X signals with programmable resolution. These signals can then be fed back to an external motion controller that closes the position or velocity loops. As an input, the port can take quad A/B signals to produce a dual-loop position control system or use the signals as master-encoder commands in camming mode. In addition, the port can take stepper command signals (CU/CD or Pulse/Direction) in differential format. #### AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J8, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor. #### AS EMULATED QUAD A/B/X ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system. #### AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration. #### AS DIGITAL COMMAND INPUTS IN PULSE/DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 16 of 28 3 4 5 6 7 8 9 11 12 14 #### MOTOR CONNECTIONS (CONT'D) Mot W REGEN+ REGEN- Frame Ground 2 3 Frame Ground W DANGER: HIGH VOLTAGE CIRCUITS ON J1, J2,
& J3 Fax: 781-828-6547 Page 17 of 28 ARE CONNECTED TO MAINS POWER ϵ Fuse * Optional Œ ≶ #### **NOTES:** Control Power Supply **Drive Operation** Required for +24 Vdc 0.5 Adc Frame Grounding Tab - 1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA - 2) Line filter is required for CE - 3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness. J3 18 [OUT3] HS RTN J4 3 +24V 2 BRAKE (= Shielded cables required for CE compliance Fax: 781-828-6547 Page 18 of 28 #### NOTES: - 1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA - 2) Line filter is required for CE - 3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness. Fax: 781-828-6547 Page 19 of 28 #### MOTOR CONNECTIONS (CONT'D) #### NOTES: - 1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA - 2) Line filter is required for CE - 3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness. ### **CANopen** Quad A/B & Sin/Cos Encoder WARNING: Hazardous voltages exist on connections to J1, J2, & J3 when power is applied, and for up to 30 seconds after power is removed. #### J1 CABLE CONNECTOR: Wago: 51118287 or 721-204/026-045/RN01-0000 Euro-style 7,5 mm pluggable female terminal block with preceding ground receptacle Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance | 11 | MAINS | CONNECTIONS | |----|-------|-------------| | Signal | Pin | |-------------------|-----| | Mains Input L3 | 4 | | Protective Ground | 3 | | Mains Input L2 | 2 | | Mains Input L1 | 1 | #### J2 MOTOR OUTPUTS | Signal | Pin | |---------------|-----| | Motor Phase U | 4 | | Motor Phase V | 3 | | Motor Phase W | 2 | | Cable Shield | 1 | #### J2 CABLE CONNECTOR: Wago: 51118008 or 721-104/026-047/RN01-0000 Euro-style 5,0 mm pluggable female terminal block Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance #### J3 CABLE CONNECTOR: Wago: 51111279 or 721-605/000-044/RN01-0000 Euro-style 5,0 mm pluggable male terminal block Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance #### **J3 REGEN RESISTOR** | Signal | Pin | |----------------|-----| | Regen Resistor | 1 | | No Connection | 2 | | Regen Resistor | 3 | | No Connection | 4 | | Cable Shield | 5 | #### WIRE INSERTION/EXTRACTION TOOL: Used on J1, J2, J3, & J4 Wago 231-131 ISOLATED CIRCUIT NOTE: AN EXTERNAL +24 VDC POWER SUPPLY IS REQUIRED FOR OPERATION #### J4 CABLE CONNECTOR: Wago: 51117974 or 721-103/026-047/RN01-0000 Euro-style 5,0 mm pluggable terminal block #### J4 +24 VDC & BRAKE | Signal | Pin | |-----------------------|-----| | +24 Vdc Control Power | 3 | | Brake Output [OUT6] | 2 | | 0V (+24 Vdc Return) | 1 | ISOLATED CIRCUIT Fax: 781-828-6547 Page 20 of 28 Quad A/B & Sin/Cos Encoder #### J8 CONTROL SIGNALS | PIN | SIGNAL | PIN | SIGNAL | | | | |-----|-----------|-----|---------------|-------|-----|---------------| | 9 | [AOUT] | 18 | [OUT3] HS |][| PIN | SIGNAL | | 8 | [IN5] HS | 17 | [OUT2] |][| 26 | Multi Enc A2 | | 7 | [IN4] HS | 16 | [OUT1] | $\ $ | 25 | Multi Enc /A2 | | 6 | [IN3] HS | 15 | Signal Gnd |][| 24 | Multi Enc B2 | | 5 | [IN2] GP | 14 | Multi Enc S2 |][| 23 | Multi Enc /B2 | | 4 | [IN1] GP | 13 | Multi Enc /S2 |][| 22 | Multi Enc X2 | | 3 | [AIN1-] | 12 | [AIN2-] |][| 21 | Multi Enc /X2 | | 2 | [AIN1+] | 11 | [AIN2+] |][| 20 | +5 Vdc Out | | 1 | Frame Gnd | 10 | [IN6] HS | $\ [$ | 19 | Signal Gnd | #### J8 CABLE CONNECTOR: **High-Density** D-Sub female, 26 Position #### J9 SECONDARY I/O CONNECTOR | PIN | SIGNAL | PIN | SIGNAL | PIN | SIGNAL | |-----|-----------|-----|------------|-----|-------------| | 1 | Frame Gnd | 6 | [IN10] GPI | 11 | [IN14] GPI | | 2 | [COMM_A] | 7 | [COMM_B] | 12 | [OUT5+] GPI | | 3 | [IN7] GPI | 8 | [IN11] GPI | 13 | [OUT5-] GPI | | 4 | [IN8] GPI | 9 | [IN12] GPI | 14 | [OUT4+] GPI | | 5 | [IN9] GPI | 10 | [IN13] GPI | 15 | [OUT4-] GPI | #### J9 CABLE CONNECTOR: High-Density D-Sub male, 15 Position #### J10 FEEDBACK | PIN | SIGNAL | PIN | SIGNAL | | PIN | SIGNAL | |-----|---------------|-----|------------|---|-----|------------| | 1 | Frame Gnd | 10 | Enc /B1 | | 19 | Sin1(+) | | 2 | Hall U | 11 | Enc B1 | | 20 | Cos1(-) | | 3 | Hall V | 12 | Enc /A1 | | 21 | Cos1(+) | | 4 | Hall W | 13 | Enc A1 | | 22 | Index1(-) | | 5 | Signal Gnd | 14 | Enc /S1 | | 23 | Index1(+) | | 6 | +5 Vdc Out | 15 | Enc S1 | Г | 24 | [IN15] | | 7 | [AIN3] Motemp | 16 | Signal Gnd | | 25 | Signal Gnd | | 8 | Enc /X1 | 17 | +5 Vdc Out | | 26 | Signal Gnd | | 9 | Enc X1 | 18 | Sin1(-) | | | | #### J10 CABLE CONNECTOR: High-Density D-Sub male, 26 Position #### J5 SAFETY DISABLE | PIN | SIGNAL | PIN | SIGNAL | |-----|-------------------|-----|----------------| | 1 | Frame Gnd | 6 | Enable LED(+) | | 2 | Safe Enable HI(+) | 7 | Enable LED(-) | | 3 | Safe Enable HI(-) | 8 | 24 Vdc Common | | 4 | Safe Enable LO(+) | 9 | +24 Vdc Output | | 5 | Safe Enable LO(-) | | | #### J5 CABLE CONNECTOR: Fax: 781-828-6547 Page 21 of 28 D-Sub male, 9 Position ## Xenus ### **CANopen** Resolver WARNING: Hazardous voltages exist on connections to J1, J2, & J3 when power is applied, and for up to 30 seconds after power is removed. #### J1 CABLE CONNECTOR: Wago: 51118287 or 721-204/026-045/RN01-0000 Euro-style 7,5 mm pluggable female terminal block with preceding ground receptacle Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance | J1 MAIN | IS CONNEC | TIONS | |---------|---------------|-------| | | Signal | Pin | | Ma | ains Input L3 | 4 | | Protective Ground | 3 | |-------------------|---| | Mains Input L2 | 2 | | Mains Input L1 | 1 | #### J2 MOTOR OUTPUTS | Signal | Pin | |---------------|-----| | Motor Phase U | 4 | | Motor Phase V | 3 | | Motor Phase W | 2 | | Cable Shield | 1 | #### J2 CABLE CONNECTOR: Wago: 51118008 or 721-104/026-047/RN01-0000 Euro-style 5,0 mm pluggable female terminal block Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance #### J3 CABLE CONNECTOR: Wago: 51111279 or 721-605/000-044/RN01-0000 Euro-style 5,0 mm pluggable male terminal block Cable: AWG 12, 600 V recommended for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R Shielded cable required for CE compliance #### **J3 REGEN RESISTOR** | Signal | Pin | |----------------|-----| | Regen Resistor | 1 | | No Connection | 2 | | Regen Resistor | 3 | | No Connection | 4 | | Cable Shield | 5 | #### WIRE INSERTION/EXTRACTION TOOL: Used on J1, J2, J3, & J4 Wago 231-131 ISOLATED CIRCUIT NOTE: AN EXTERNAL +24 VDC POWER SUPPLY IS REQUIRED FOR OPERATION #### J4 CABLE CONNECTOR: Wago: 51117974 or 721-103/026-047/RN01-0000 Euro-style 5,0 mm pluggable terminal block #### +24 VDC & BRAKE | Signal | Pin | |-----------------------|-----| | +24 Vdc Control Power | 3 | | Brake Output [OUT6] | 2 | | 0V (+24 Vdc Return) | 1 | ISOLATED CIRCUIT Fax: 781-828-6547 Page 22 of 28 **J**6 **J7** **J9** J10 | PIN | SIGNAL | PIN | SIGNAL | | | | |-----|-----------|-----|---------------|------|-----|---------------| | 9 | [AOUT] | 18 | [OUT3] HS | $\ $ | PIN | SIGNAL | | 8 | [IN5] HS | 17 | [OUT2] |][| 26 | Multi Enc A2 | | 7 | [IN4] HS | 16 | [OUT1] |][| 25 | Multi Enc /A2 | | 6 | [IN3] HS | 15 | Signal Gnd |][| 24 | Multi Enc B2 | | 5 | [IN2] GP | 14 | Multi Enc S2 |][| 23 | Multi Enc /B2 | | 4 | [IN1] GP | 13 | Multi Enc /S2 |][| 22 | Multi Enc X2 | | 3 | [AIN1-] | 12 | [AIN2-] |][| 21 | Multi Enc /X2 | | 2 | [AIN1+] | 11 | [AIN2+] |][| 20 | +5 Vdc Out | | 1 | Frame Gnd | 10 | [IN6] HS | H | 19 | Signal Gnd | #### J8 CABLE CONNECTOR: High-Density D-Sub female, 26 Position #### J9 SECONDARY I/O CONNECTOR | PIN | SIGNAL | PIN | SIGNAL | PIN | SIGNAL | |-----|-----------|-----|------------|-----|-------------| | 1 | Frame Gnd | 6 | [IN10] GPI | 11 | [IN14] GPI | | 2 | [COMM_A] | 7 | [COMM_B] | 12 | [OUT5+] GPI | | 3 | [IN7] GPI | 8 | [IN11] GPI | 13 | [OUT5-] GPI | | 4 | [IN8] GPI | 9 | [IN12] GPI | 14 | [OUT4+] GPI | | 5 | [IN9] GPI | 10 | [IN13] GPI | 15 | [OUT4-] GPI | #### J9 CABLE CONNECTOR: **High-Density** D-Sub male, 15 Position #### J10 FEEDBACK | PIN | SIGNAL | PIN | SIGNAL |] | PIN | SIGNAL | |-----|---------------|-----|------------|----|-----|------------| | 1 | Frame Gnd | 10 | Enc /B1 |] | 19 | Sin1(+) S3 | | 2 | Hall U | 11 | Enc B1 |] | 20 | Cos1(-) S4 | | 3 | Hall V | 12 | Enc /A1 |]] | 21 | Cos1(+) S2 | | 4 | Hall W | 13 | Enc A1 |] | 22 | Ref(-) R2 | | 5 | Signal Gnd | 14 | Enc /S1 |] | 23 | Ref(+) R1 | | 6 | +5 Vdc Out | 15 | Enc S1 |] | 24 | [IN15] | | 7 | [AIN3] Motemp | 16 | Signal Gnd |] | 25 | Signal Gnd | | 8 | Enc /X1 | 17 | +5 Vdc Out | | 26 | Signal Gnd | | 9 | Enc X1 | 18 | Sin1(-) S1 |] | | | #### J10 CABLE CONNECTOR: **High-Density** D-Sub male, 26 Position #### J5 SAFETY DISABLE | PIN | SIGNAL | PIN | SIGNAL | |-----|-------------------|-----|----------------| | 1 | Frame Gnd | 6 | Enable LED(+) | | 2 | Safe Enable HI(+) | 7 | Enable LED(-) | | 3 | Safe Enable HI(-) | 8 | 24 Vdc Common | | 4 | Safe Enable LO(+) | 9 | +24 Vdc Output | | 5 | Safe Enable LO(-) | | | #### J5 CABLE CONNECTOR: D-Sub male, 9 Position #### **DRIVE POWER SOURCES** An external +24 Vdc power supply is required, and powers an internal DC/DC converter that supplies all the control voltages for drive operation. Use of an external supply enables CAN communication with the drive when the mains power has been removed. Power distribution in *XPL* is divided into three sections: +24 Vdc, signal, and high-voltage. Each is isolated from the other and all are
isolated from the chassis. #### EXTERNAL +24 VDC The primary side of the DC/DC converter operates directly from the external +24 Vdc supply and is isolated from other drive power sections. The Brake output [OUT6] operates in this section and is referenced to the +24 Vdc return (0V). It sinks current from an external load connected to the external +24 Vdc power source. #### INTERNAL SIGNAL POWER The signal power section supplies power for the control circuits as well as logic inputs and outputs. Motor feedback signals such as Halls, encoder, and temperature sensor operate from this power source. All signal circuits are referenced to signal ground. This ground should connect to the control system circuit ground or common so that drive and controller inputs and output voltage levels work properly with each other. #### MAINS POWER Mains power drives the high-voltage section. It is rectified and capacitor-filtered to produce +HV which the PWM stage converts into voltages that drive either three phase brushless or DC brush motors. An internal solid-state switch together with an external power resistor provides dissipation during regeneration when the mechanical energy of the motor is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition. All the circuits in this section are "hot", that is, they connect directly to the mains and must be considered high-voltages and a shock hazard requiring proper insulation techniques during installation. #### **GROUNDING** A grounding system has three primary functions: safety, voltage-reference, and shielding. As a safety measure, the primary ground at J1-3 will carry fault-currents from the mains in the case of an internal failure or short-circuit of electronic components. Wiring to this is typically done with the green conductor with yellow stripe using the same gauge wire as that used for the mains. The pin on the drive at J1-3 is longer than the other pins on J1 giving it a first-make, last-break action so that the drive chassis is never ungrounded when the mains power is connected. This wire is a 'bonding' conductor that should connect to an earthed ground point and must not pass through any circuit interrupting devices. All of the circuits on J1, J2, and J3 are mainsconnected and must never be grounded. The ground terminals at J1-3, J2-1, and J3-5 all connect to the drive chassis and are isolated from all drive internal circuits. Signal grounding references the drive control circuits to those of the control system. These controls circuits typically have their own earth connection at some point. To eliminate ground-loops it is recommended that the drive signal ground be connected to the control system circuit ground. When this is done the drive signal voltages will be referenced to the same 0 V level as the circuits in the control system. Small currents flow between controller and drive when inputs and outputs interact. The signal ground is the path for these currents to return to their power sources in both controller and drive. Shields on cables reduce emissions from the drive for CE compliance and protect internal circuits from interference due to external sources of electrical noise. Because of their smaller wire gauge, these should not be used as part of a safety-ground system. Motor cases can be safety-grounded either at the motor, by earthing the frame, or by a grounding conductor in the motor cable that connects to J2-1. This cable should be of the same gauge as the other motor phase cables. For CE compliance and operator safety, the drive heatplate should be earthed to the equipment frame. An unplated tab is provided on the heatplate (near to J1) for this connection. #### **REGENERATION** The chart below shows the energy absorption in W·s for a *Xenus Plus* drive operating at some typical mains voltages. When the load mechanical energy is greater than these values an external regen resistor is available as an accessory. Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Fax: 781-828-6547 Page 24 of 28 # GROUNDING & SHIELDING FOR CE Grounding and shielding are the means of controlling the emission of radio frequency energy from the drive so that it does not interfere with other electronic equipment. The use of shielded cables to connect the drive to motors and feedback devices is a way of extending the chassis of the drive out to these devices so that the conductors carrying noise generated by the drive are completely enclosed by a conductive shield. The process begins at the mains connector of the drive, J1. The ground terminal here has a circle around it indicating that this is the safety or "bonding" ground connection. This should be connected with wire that is the same gauge as that used for the mains. In the case of a short-circuit in the drive the function of this ground connection is to carry the fault current to earth ground until the safety device (fuse or circuit breakers) disconnects the drive from the mains. This connection ensures that the heatplate of the drive remains at earth potential and eliminating a shock hazard that could occur of the chassis were allowed to float to the potential of the mains. While this connection keeps the heatplate at earth potential the high frequency noise generated by switching circuits in the drive can radiate from the wire used for the safety ground connection. In order to keep the path between the heatplate and earth as short as possible it's also recommended to mount the drive to the equipment panel. An unplated tab on the heatplate is provided for this and will ground the heatplate directly to the equipment frame, further reducing emissions. The heatplate also connects directly to the frame ground terminals on the motor, feedback, and regen connectors. Note that the ground symbols for these do not have a circle around them which indicates that these are for shielding and not not for safety grounding. Motors and their feedback devices (which are typically in the motor case) should be grounded by mounting to equipment that is grounded as a safety ground. By connecting the shields for these devices at the drive and at the device, the connection is continuous and provides a return path for radio-frequency energy to the drive. #### Notes: - 1) Shielded cables required for CE are shown in the diagram above. - 2) Line filter required for CE - 3) Ferrite core (Magnetics Inc, ZW43615-TC) required for shielded cable to regen resistor which must be in shielded enclosure. Fax: 781-828-6547 Page 25 of 28 #### **HEATSINK & FAN CONFIGURATIONS** NO HEATSINK WITH FAN NOTE: FANS ARE NOT INCLUDED WITH HEATSINKS OR HEATSINK KITS LOW-PROFILE HEATSINK NO FAN LOW PROFILE HEATSINK WITH FAN STANDARD HEATSINK NO FAN STANDARD HEATSINK WITH FAN #### **HEATSINK MOUNTING** A dry-film interface pad is used in place of thermal grease. The pad is die-cut to shape and has holes for the heat sink mounting screws. There are two protective sheets, blue on one side and clear on the other. Both must be removed when the interface pad is installed. #### STEPS TO INSTALL - 1. Remove the blue protective sheet from one side of the pad and place the pad on the drive. Make sure that the holes in the pad align with the holes on the drive. - 2. Remove the clear protective sheet from the pad. - 3. Mount the heatsink onto the drive taking care to see that the holes in the heatsink, pad, and drive all line up. - 4. Torque the #8-32 mounting screws to 16~20 lb-in (1.8~2.3 N·m). #### MAXIMUM OPERATING TEMPERATURE VS HEATSINK TYPE & AIR CIRCULATION The charts below show that maximum ambient temperature vs. continuous output current for the Xenus Plus models. The cooling options are no heatsink, standard heatsink, and low-profile heatsink. For each of these the drive can be operated with convection or forced-air cooling. #### XPL-230-18 #### XPL-230-36 #### XPL-230-40 #### XPL-230-18 #### XPL-230-36 Mains: 240 Vac w/fan Fax: 781-828-6547 Page 27 of 28 No Heatsink 1 2 3 4 5 6 7 8 9 10 11 12 Continuous Output Current (Adc) #### XPL-230-40 20 Continuous Output Current (Adc) ## CANopen #### ORDERING GUIDE | XPL-230-18 | Xenus Plus Servo Drive 6/18 Adc | |------------|----------------------------------| | XPL-230-36 | Xenus Plus Servo Drive 12/36 Adc | | XPL-230-40 | Xenus Plus Servo Drive 20/40 Adc | Add "-R" to model number for resolver option Example: Order one Xenus Plus drive, resolver version, 6/18 A with solder-cup connector Kit, CME 2 CD, serial cable kit and small heatsink fitted at the factory: Qty Item Remarks 1 XPL-230-18-R-HS Xenus Plus servo drive 1 XPL-CK Connector Kit 1 CME CME2 CME2 CD 1 SER-CK Serial Cable Kit Note: The heatsink can be fitted at the factory by adding an "+HS" or "-HL" to the drive part number to specify the standard or low-profile type. For fitting a heatsink to an drive in the field, complete kits are available (XPL-HS and XPL-HL). These kits contain the heatsink, mounting hardware, and dry-film interface. #### **ACCESSORIES** | | QTY | REF | DESCRIPTION | MANUFACTURERS PART NUMBER | | |-------------------|-----|------|--|--------------------------------|--| | XPL-CK | 1 | J1 | Plug, 4 position, 7.5 mm, female | Wago: 721-204/026-045 (Note 1) | | | Connector Kit | 1 | J2 | Plug, 4 position, 5.0 mm, female | Wago: 721-104/026-047 (Note 1) | | | with | 1 | J3 | Plug, 5 position, 5.0 mm, male | Wago: 721-605/000-044 (Note 1) | | | Solder Cup | 1 | J4 | Plug, 3 position, 5.0 mm, female | Wago: 721-103/026-047 (Note 1) | | | Connectors
for | 4 | J1~4 | Tool, wire insertion & extraction (for J1~4) | Wago: 231-131 | | | J5, J8, J9 & J10 | 1 | 15 | Connector, D-Sub, 9-position, male, solder cup | Norcomp: 171-009-103L001 | | | | 1 | J5 | Backshell, D-Sub, RoHS, metallized, for above | Norcomp: 979-009-020R121
| | | | 1 | J8 | Connector, high-density D-Sub, 26 position, female, solder cup | Norcomp: 180-026-203L001 | | | | 1 | 10 | Backshell, D-Sub, RoHS, metallized, for above | Norcomp: 979-015-020R121 | | | | 1 | J9 | Connector, high-density D-Sub, 15 position, male, solder cup | Norcomp: 180-015-103L001 | | | | 1 | | Backshell, D-Sub, RoHS, metallized, for above | Norcomp: 979-009-020R121 | | | | 1 | 110 | Connector, high-density D-Sub, 26 position, male, solder cup | Norcomp: 180-026-103L001 | | | | 1 | J10 | Backshell, D-Sub, RoHS, metallized, for above | Norcomp: 979-015-020R121 | | | CME 2 | J5 | | CME 2 Drive Configuration Software (CD-ROM) | | | | SER-CK | | | RS-232 Cable Kit | | | #### Heatsink Kits for Field Installation (Optional) | XPL-HL
Heatsink Kit
Low-Profile | 1 | Heatsink, low-profile | | |---------------------------------------|---|---------------------------|--| | | 1 | Heatsink thermal material | | | | 4 | Heatsink hardware | | | XPL-HS
Heatsink Kit
Standard | 1 | Heatsink, standard | | | | 1 | Heatsink thermal material | | | | 4 | Heatsink hardware | | #### Regeneration Resistors (Optional) | XTL-RA-03 | Regeneration resistor assembly (for XPL-230-18), 30 Ω | |-----------|--| | XTL-RA-04 | Regeneration resistor assembly (for XPL-230-36 & XPL-230-40 models), 15 Ω | #### Edge Filter (Optional) | XTL-FA-01 | | Edge filter | | |--|---|-----------------------------------|-----------------------| | Edge Filter
Connector Kit
XTL-FK | 1 | Plug, 4 position, 5.0 mm, female | Wago: 721-104/026-047 | | | 1 | Plug, 5 position, 5.0 mm, male | Wago: 721-605/000-044 | | | 2 | Tool, wire insertion & extraction | Wago: 231-131 | Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above #### Connectors & Software for CANopen Operation | | 1 | | D-Sub 9F to RJ-45 Adapter | |-----------|---|----|---| | XPL-NK | 1 | | CAN bus RJ-45 terminator | | | 1 | | CAN bus network cable, 10 ft (3 m) | | XPL-CV | 1 | J7 | D-Sub 9F to RJ-45 Adapter | | XPL-NC-10 | 1 | | CAN bus Network Cable, 10 ft (3 m) | | XPL-NC-01 | 1 | | CAN bus Network Cable, 1 ft (0.3 m) | | XPL-NT | 1 | | CAN bus Network Terminator | | СМО | | | CD with CMO Software | | CML | | | CD with CML Software (Note: license fee required) | Note: Specifications are subject to change without notice Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 Tech Support: E-mail: sales@copleycontrols.com, Web: http://www.copleycontrols.com Page 28 of 28 04/13/2015 Rev 10.03-mo